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INTRODUCTION 

Periodontitis affects the supporting structures of the 
teeth and requires timely intervention to prevent tooth 

loss. Conventional non-surgical therapy is scaling and 
root planing (SRP), which mechanically removes plaque 
and calculus to reduce infection. SRP is widely  
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ABSTRACT 

Background: Periodontal treatment mainly uses scaling and root planing (SRP) and now often includes laser 

therapy. SRP is the primary initial treatment, but laser options, such as diode and Er: YAG, can temporarily 

reduce inflammation and pain. The decision between laser and traditional methods depends on patient factors, 

highlighting the need for automated support. We introduce a federated deep Q-learning system to recommend 

laser therapy based on patient features. We incorporate self-supervised encoding (PCA) to reduce feature 

dimensionality and a RAG-based reward shaping strategy to integrate domain knowledge in training. 

Methods: We trained a DQN agent at five sites with patient data, reducing features through PCA to 8 

components. It used a 32-unit MLP for treatment decisions, with rewards based on RAG feedback from similar 

cases. Training employed Federated Averaging to safeguard privacy, and performance was assessed using 

accuracy, ROC AUC, Average Precision, confusion matrix, classification report, and feature importance 

analysis. 

Results: Across the test set, the federated DQN achieved an accuracy of 60%. As shown in Table 1, 26 of 33 

laser recommendations were correctly classified, while only 10 of 27 conventional cases were correctly 

identified. The ROC curve yielded an AUC of ~0.69 (Figure 3), indicating moderate discriminative ability.  

Conclusions: Our results demonstrate the feasibility of federated deep Q-learning for personalized periodontal 

therapy recommendations. The moderate performance (AUC ~0.69) suggests that the model learns to make 

meaningful distinctions between treatment pathways.  
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considered the gold standard initial treatment for 
chronic periodontitis. In many cases, SRP effectively 
reduces pocket depth and inflammation. However, 
new technologies such as laser therapies have been 
explored as adjuncts or alternatives to SRP. Lasers can 
decontaminate pockets and biostimulate tissues. 
Clinical studies have reported additional short-term 

benefits from lasers . For example, adding a diode 
laser to SRP yielded modest gains in inflammation 
reduction, and the Er: YAG laser achieved effects 
comparable to those of SRP alone. Low-level lasers 
can also accelerate healing and reduce post-operative 
symptoms via photobiomodulation. Nevertheless, the 
evidence is mixed, and systematic reviews have often 

found no significant superiority of lasers over SRP. 
These mixed outcomes may be due to heterogeneity in 
study parameters and patient profiles. 
Given these nuances, treatment decisions (laser vs. 
conventional) are patient-specific. Traditionally, 
clinicians use clinical indicators (such as probing 
depth, bleeding, inflammation, and pain) and their 

experience to select the most suitable therapy1. 
However, decision-making may benefit from data-
driven support that integrates multiple features and 
learns from outcomes . Prior work has utilized 
supervised models to predict disease progression or 
therapy response 2. Yet, standard models do not 
capture the sequential decision-making aspect: each 
patient’s treatment choice leads to clinical outcomes 

over time. Reinforcement learning (RL) explicitly 
models sequential, personalized decision processes by 
learning policies that maximize cumulative 
rewardClick or tap here to enter text.. In healthcare, 
RL has been applied to optimize treatments in 
dynamic settings – for example, an RL “AI Clinician” 
learned sepsis management strategies that 

outperformed those of human clinicians in 
retrospective data. Such results demonstrate that RL 
can extract latent treatment policies from patient data. 
In periodontics, an RL agent could similarly learn 
which therapy (laser vs. SRP) tends to yield better 
outcomes given patient features. 
Deep Q-Networks (DQN)  combine RL with deep 

neural networks.3-6 to handle high-dimensional input 
spaces 7. The deep Q-network learns a value function 
that maps states to the expected returns for each action. 
This is well-suited when input features (e.g., patient 
measurements) are numerous. We employ a DQN to 
recommend periodontal therapy actions. To handle 
multi-site patient data, we incorporate Federated 
Learning (FL). In healthcare, data privacy is 

paramount, and FL allows decentralized model 
training without sharing raw data.8. In FL, each center 
(shard) trains a local model and only model updates 
are aggregated globally,  
 
 

 

 
preserving patient confidentiality. By federating the 
DQN, we leverage data diversity (e.g., five clinic sites) 
while maintaining privacy. 
Application of Federated Deep Q-Learning to provide the 
most effective recommendations for laser treatment 
across various periodontal conditions. The method 
protects privacy by training models on data from multiple 

sources without transmitting sensitive patient information 
to a central server 9. The study also addresses the issue of 
insufficient labeled data in dental settings by employing 
self-supervised encoding methods. Using RAG (Reward-
Aware Generative) techniques to shape rewards enhances 
the model's ability to learn, thereby improving the quality 
of its recommendations.10. The interdisciplinary 

approach, which combines machine learning, medical 
knowledge, and patient-centered methods, demonstrates 
the importance of integrating diverse techniques to 
enhance healthcare technology. Rather than feeding raw 
clinical variables into the network, we first reduce them 
to a lower-dimensional representation (8 principal 
components) 11. This unsupervised step can capture 

underlying structure (correlations among measurements) 
and reduce noise, enabling the DQN to focus on salient 
features. PCA has been used in medical ML to distill 
complex feature sets into compact inputs, potentially 
improving generalization. Finally, we incorporate a RAG-
based reward shaping mechanism. RAG (Retrieval-
Augmented Generation) usually refers to augmenting 
language models with external knowledge.  This study 

aims to propose a federated DQN framework for 
recommending laser versus conventional periodontal 
therapy. 
 
MATERIALS AND METHODS 

Study Design and Objective 

 
 
      Figure 1. shows the workflow of the study. 
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This retrospective study used de-identified clinical 
data from 300 adult patients at a university-affiliated 
dental clinic between 2022 and 2024. Its main goal 
was to create and assess a reinforcement learning 
model that recommends laser-assisted or conventional 
periodontal treatment based on baseline clinical 
indicators. The study adhered to the Declaration of 

Helsinki and STROBE guidelines, with ethical 
approval obtained before data collection and use. A 
total of 300 treatment records were used in this study. 
Each case was manually labeled by a senior 
periodontist (with ≥10 years of clinical experience) to 
reflect the recommended therapy(Fig. 1). The label 
was binary: 

 “Laser” (1): Indicating adjunct diode laser 
therapy was recommended. 

 “Conventional” (0): Indicating only scaling 
and root planing (SRP) was advised. 

 
Clinical Features 
For each case, five primary baseline clinical features 

were extracted from periodontal charting and records. 
These features included Probing Depth (PD), which 
was measured in millimeters at the deepest site and 
indicates the severity of periodontal pocketing. 
Bleeding on Probing (BOP) was recorded as a binary 
variable, with a value of 1 indicating the presence and 
0 indicating the absence, serving as an indicator of 
gingival inflammation. The pain score was reported by  

patients on a numerical rating scale, ranging from 0 
(denoting no pain) to 10 (representing severe pain). 
The Inflammation Level was classified into three 
expert-rated categories—Low, Moderate, or Severe—
based on clinical signs such as erythema, edema, and 
spontaneous bleeding. Lastly, Keratinized Gingiva 
Width (KGW) was measured in millimeters at the 

buccal aspect of the mid-facial gingiva of the most 
affected site. 
Data Preprocessing and Encoding 
Before model input, data preprocessing was performed 
to prepare the dataset. Continuous variables such as 
PD, KGW, and Pain Score were standardized using z-
score normalization, which adjusts them to have a 

mean of 0 and a standard deviation of 1, calculated 
from the training set. Categorical variables included 
BOP, which was encoded as a binary indicator (0 or 
1), and Inflammation Level, transformed into ordinal 
integers with values of Low (0), Moderate (1), and 
Severe (2). In some experiments requiring a non-
ordinal approach, Inflammation Level was one-hot 
encoded. This preprocessing resulted in a structured 

feature vector for each patient, representing their 
clinical profile. Notably, the dataset contained no 
missing values, and any outliers present were retained, 
as they reflected genuine clinical variability. The 
dataset was randomly divided into training and testing 
sets, with 80% (240 cases) allocated for training to  

 

 
simulate distributed clients in federated learning, and the 
remaining 20% (60 cases) reserved for final evaluation of 
the model. 
Federated Learning Setup: To simulate multi-institutional 
learning, we partitioned the data into five subsets (shards) 
of 60 cases each, mimicking five clinics. Each shard’s 
data remains local. We initialized a global DQN model 

and distributed it to each shard. Each shard performed 
local training on its data for several epochs. After local 
updates, model weights (or gradients) were encrypted and 
sent to a central server for aggregation. We used the 
Federated Averaging (FedAvg) algorithm: the server 
averaged the weights from all shards to update the global 
model. This process is repeated for multiple federated 

rounds. Importantly, no raw patient data is stored on any 
shard, thereby ensuring patient privacy is preserved. 
Deep Q-Learning Agent: We formulated the treatment 
recommendation as an RL problem, where each patient 
case constitutes an independent episode of length 1Click 
or tap here to enter text.. The agent observes the PCA-
encoded patient state and chooses an action: recommend 

Laser or Conventional therapy. The state dimension is 8, 
and the action space has two actions. We designed a Deep 
Q-Network (DQN) with a simple multilayer perceptron. 
The network has an input layer of size 8, one hidden layer 
of 32 units (ReLU activation), and an output layer of size 
2 (Q-values for each action). A two-layer network was 
sufficient given the modest input size. The architecture 
adheres to standard DQN practice, utilizing a compact 

network to prevent overfitting. A separate target network 
was maintained and updated periodically to stabilize the 
learning process. 
Reward Design and RAG-Based Shaping: The base 
reward was defined as +1 for a correct recommendation 
and -1 for an incorrect one, where “correct” means 
matching the provided recommended therapy label. To 

incorporate domain knowledge, we added a retrieval-
based shaping term. Specifically, for each patient, we 
retrieved the k = 5 nearest neighbors in PCA space from 
the training set and examined their true outcomes. If the 
chosen action aligned with the majority outcome of these 
neighbors, we provided an additional small bonus reward 
(+0.5); if it disagreed, we imposed a small penalty (-0.5). 

This reward shaping (inspired by retrieval-augmented 
generation ideas) provides intermediate guidance so that 
actions consistent with similar cases are favored. The 
potential-based shaping preserved the optimal policy 
while improving learning efficiency. 
Training Procedure: We trained for 200 federated rounds. 
In each round, each shard performed 10 local training 
episodes (batch size = 32, randomly sampled cases with 

replay) of standard DQN learning using the Bellman 
update with a discount factor of γ = 0.9. The learning rate 
was set to 0.001 (Adam optimizer). A replay buffer of size 
1000 at each shard stores recent experiences (state, action, 
reward, next state) 12. ε-greedy exploration was used 
locally, with ε decaying from 1.0 to 0.1 over training. The  
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target network was updated every five episodes. After 
local updates, shards sent the gradients to the server 
for FedAvg weight aggregation. This synchronized the 
global network across shards each round. 
Hyperparameters (hidden units = 32, shards = 5, PCs 
= 8) were selected through preliminary experiments to 
strike a balance between performance and 

computation. 
Evaluation Metrics: After training, the global policy 
was evaluated on a held-out test set (20% of the data, 
comprising 60 cases) that was not used in any shard 
training. We recorded accuracy (the fraction of correct 
therapy recommendations) and computed Receiver 
Operating Characteristic (ROC) curves and the Area 

Under the Curve (AUC) 13. We also calculated 
Average Precision (AP) from precision-recall curves. 
Additionally, we tabulated a confusion matrix and a 
detailed classification report (precision, recall, F1-
score) for the two classes. Feature importance was 
assessed by permutation: each PCA feature (PC1–
PC8) was randomly permuted in the test data to 

measure the decrease in accuracy.14,15. All experiments 
were repeated with different data splits to ensure 
robustness; reported results are from a representative 
run. 
 
RESULTS 

The federated DQN achieved an accuracy of 60% on 
the test set. Table 1 presents the confusion matrix: of  

33 true Laser cases, 26 were correctly predicted as 
Laser (and seven misclassified as Conventional). Of 
27 true Conventional cases, only 10 were correctly 
predicted (17 misclassified as Laser). This indicates 
the agent more readily identified Laser candidates than 
Conventional ones. The classification report (Table 1) 
shows that Laser recommendations had a higher recall 

(0.788) than Conventional (0.370), though precision 
was similar for both classes. The overall accuracy 
(0.600) reflects the balanced support for the two 
classes. 
 

Label Precisi
on 

Reca
ll 

F1-
scor
e 

Suppo
rt 

Actual_Laser 0.60 0.79 0.68 33 

Actual_Conventi
onal 

0.59 0.37 0.45 27 

Accuracy 
  

0.60 60 

Macro avg 0.60 0.58 0.57 60 

Weighted avg 0.60 0.60 0.58 60 

 
Table-1. Classification report (precision, recall, F1-
score)  

for each class (Laser vs Conventional) on the test set. 
The classification report shows that the model 
performs better in identifying Laser treatments (F1- 

 

 
score: 0.68) compared to Conventional ones (F1-score: 
0.45), with an overall accuracy of 60%. The model 
demonstrates high recall for Laser (0.79) but low recall 
for Conventional (0.37), suggesting a bias toward 
recommending laser therapy. Macro and weighted 
averages confirm moderate performance, highlighting the 
need to improve the balance between the two treatment 

classes. 
 

 
 
Figure. 2 shows the PCA projection of the test cases in 
the space of the first two principal components (using the 
original clinical features). Laser cases are marked in red 
(cross), while conventional cases are marked in blue 
(cross). The scatter plot shows clustering: several Laser 

cases are located in the upper left. In contrast, 
Conventional cases are concentrated in the lower right, 
indicating that PCA captures treatment differences that 
the DQN exploits. PC4 has the greatest impact on 
classification accuracy, followed by PC3 and PC1. 
Permuting PC5 increased accuracy, indicating the 
presence of noise. Clinical feature combos, especially 
PC4/PC3, are most informative for the DQN. 

 
 
Figure 3. shows a moderate tradeoff between true 
positive and false positive rates. The computed AUC was 
approximately 0.69, indicating better-than-chance 
discrimination of Laser vs. Conventional 
recommendations. The ROC shows higher recall, but also  
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increases false positives, reflecting class imbalance. 
The average precision (AP ~0.60) indicates the 
precision-recall tradeoff. The model performs 
moderately well, identifying Laser candidates more 
accurately than Conventional ones, with an overall 
accuracy of 60%. The ROC curve for the federated 
DQN has an AUC of ~0.69, indicating its balance in 

classifying laser treatments versus conventional 
treatments. No external data was used; ROC is based 
on test predictions. 
 

 
Figure 4 illustrates that the PR curve is particularly 
useful for imbalanced datasets and binary 
classification, plotting precision against recall. The 

Average Precision (AP) score is 0.62, measuring the 
area under the PR curve. The model exhibits high 
precision at the expense of low recall, indicating 
accurate top predictions but potentially missing 
positives.  Laser treatment predictions are often 
accurate and confident, but the model requires 
refinement to prevent missing cases. 

 

 
Figure 5. shows the analysis evaluating the 
contribution of each principal component (PC1–PC8) 
to the model's accuracy. It reveals that PC4, PC3, and 
PC1  

 

 

 
cause the most significant drops in accuracy when 
permuted, indicating that these components contain the 
most predictive information. These PCs likely represent 
critical clinical features such as probing depth, 
inflammation severity, or keratinized gingiva width. In 
contrast, PC5 and PC6 exhibit negligible or negative 
influence, suggesting they contribute little to the model or 

may primarily represent noise. 
 
DISCUSSION 

 

Federated training appeared to preserve performance 
relative to non-federated learning (not shown), 
highlighting FL’s utility. By training on five shards, we 

effectively increased data diversity. Federated Learning 
has been shown to enable multi-center collaboration 
without data sharing. Our implementation utilized 
FedAvg and five shards, with hyperparameters chosen to 
strike a balance between convergence speed and stability. 
Even with non-IID distributions across shards, the global 
model converged. This illustrates that federated deep RL 

is viable in a clinical context: multiple clinics can jointly 
train a treatment policy while each retains patient records 
locally. This study demonstrates the feasibility of a 
federated deep Q-learning approach for recommending 
laser vs. conventional periodontal therapy. The federated 
DQN achieved moderate accuracy (0.60) and an AUC of 
~0.69, indicating that it learned a meaningful policy from 
the decentralized data. The agent was better at 

recognizing Laser therapy cases (higher recall) than 
Conventional ones; this could reflect patterns in the 
dataset or class overlap(fig. 2, 3, 4, 5)(table 1). For 
example, many severe inflammation cases (labeled 
Severe) may correlate with Laser recommendations, 
making them easier to identify. 
The RAG-based reward shaping likely improved learning 

speed by providing extra guidance. By rewarding actions  
consistent with similar past cases, we injected domain 
knowledge into the reward. Reward shaping is known to 
speed up RL training; although we did not separately 
quantify its effect here, the shaped reward prevented 
extremely sparse learning. In a real deployment, one 
could extend this by retrieving from external medical 

knowledge bases or guidelines to validate decisions. 
 An AI agent(1,12) that recommends treatments could 
assist clinicians in decision-making, particularly in 
settings where specialists are scarce. The approach here 
could be integrated into a decision support system: a new 
patient’s features are fed into the (federated) model to 
suggest laser or conventional therapy. RL-based systems 
naturally adapt policies as more outcomes accumulate, 

potentially personalizing therapy. In periodontology (9–
11), even a modestly accurate system could improve the 
consistency of care or highlight borderline cases for 
review. Performance was only moderate, reflecting the  
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limitations of the data. With only 300 cases total and a 
small test set, statistical variance is high. The model’s 
accuracy may improve with larger, more diverse 
datasets. Our reward shaping was simplistic; more 
sophisticated RAG techniques (using knowledge 
graphs or LLMs) might yield better guidance. We also 
did not incorporate temporal outcomes (the data was 

cross-sectional). True treatment response is 
sequential; a more advanced RL could model multi-
stage therapy outcome. Lasers provide some benefit 
but are not significantly better than SRP. The model’s 
uncertainty between classes reflects clinical 
ambiguity. Our federated framework addresses 
privacy concerns in line with the recognized need for 

multi-center learning. The DQN architecture (a 32-
unit MLP) is simple yet effective for tabular clinical 
data, similar to prior clinical RL models(13–15). In the 
future, the dataset will include real-world clinical 
records from multiple centers, with additional 
variables such as radiographic and microbiome 
features. Real-time reinforcement learning will enable 

adaptive decision-making and improve clarity by 
utilizing advanced methods, such as counterfactual 
analysis. Some limitations of this study include the 
small sample size, potential bias toward laser 
treatment due to the assignment of labels, and the use 
of predefined PCA components, which may 
complicate the interpretation of raw features. The 
federated setup based on simulation may also differ 

from actual network conditions. 
 
CONCLUSION 

We presented a federated Deep Q-Network 
recommending laser therapy versus conventional 
treatment based on patient features. Self-supervised 
PCA reduced features to 8, and RAG-inspired reward 

shaping provided training signals. The model achieved  
60% accuracy and a ROC AUC of ~0.69. Key points 
include the significance of feature combinations and 
multi-institutional RL training without data sharing. 
This showcases the potential of RL, federated 
learning, and self-supervision in medical decision 
support. Future work will expand the dataset, refine 

reward models, and test in clinical workflows. 
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